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The Strength of Weak Learnability

Robert E. Schapire

MIT Laboratory for Computer Science
Cambridge, MA 02139

October 16, 1989

Abstract

The problem considered is that of improving the accuracy of an hypothesis output
by a learning algorithm in the distribution-free (PAC) learning model. A concept class
is learnable (or strongly learnable) if, given access to a source of examples from the
unknown concept, the learner with high probability is able to output an hypothesis
that is correct on all but an arbitrarily small fraction of the instances. The concept
class is weakly learnable if the learner can produce an hypothesis that performs only
slightly better than random guessing. In this paper, it is shown that these two notions

of learnability axe equivalent.
A method is described for converting a weak learning algorithm into one that

achieves arbitrarily high accuracy. This construction may have practical applications
as a tool for efficiently converting a mediocre learning algorithm into one that per-
forms extremely well. In addition, the construction has some interesting theoretical
consequences, including a set of general upper bounds on the complexity of any strong
learning algorithm as a function of the allowed error c.

Keywords: Machine learning, learning from examples, polynomial-time identification.

1 Introduction

Since Valiant's pioneering paper [23], interest has flourished in the so-called distribution-

free or probably approximately correct (PAC) model of learning. In this model, the learner

tries to identify an unknown concept based on randomly chosen examples of the concept.

Examples are chosen according to a fixed but unknown and arbitrar- distribution on the

This paper prepared with support from ARO Grant DAAL03-86-K-0171, DARPA Contract N00014-89-
J-1988, and a grant from the Siemens Corporation.

Author's net address: rs@theory.Ics.mit.edu.



space of instances. The learner's task is to find an hypothesis or prediction rule of his own

that correctly classifies new instances as positive or negative examples of the concept. With

high probability, the hypothesis must be correct for all but an arbitrarily small fraction of

the instances.

Often, the inference task includes a requirement that the output hypothesis be of a

specified form. In this paper, however, we will instead be concerned with a representation-

independent model of learning in which the learner may output any hypothesis that classifies

instances in polynomial time.

A class of concepts is learnable (or strongly learnable) if there exists a polynomial-time

algorithm that achieves low error with high confidence for all concepts in the class. A

weaker model of learnability, called weak learnability, drops the requirement that the learner

be able to achieve arbitrarily high accuracy; a weak learning algorithm need only output an

hypothesis that performs slightly better (by an inverse polynomial) than random guessing.

The notion of weak learnability was introduced by Kearns and Valiant [17, 18] who left open

the question of whether the notions of strong and weak learning are equivalent. This question

was termed the hypothesis boosting problem since showing the notions are equivalent requires

a method for boosting the low accuracy of a weak learning algorithm's hypotheses.

Kearns [15], considering the hypothesis boosting problem, gives a convincing argument

discrediting the natural approach of trying to boost the accuracy of a weak learning algorithm

by running the procedure many times and taking "majority vote" of the output hypotheses.

Kearns and Valiant [14, 17] show that, under a uniform distribution on the instance space,

monotone Boolean functions are weakly, but not strongly, learnable. This implies that strong

and weak learnability are not equivalent when certain restrictions are placed on the instance

space distribution. Thus, it did not seem implausible that the strong and weak learning

models would prove to be inequivalent for unrestricted distributions as well.

Nevertheless, in this paper, the hypothesis boosting question is answered in the affirma-

tive. The main result is a proof of the perhaps surprising equivalence of strong and weak

learnability.

This result may have significant applications as a tool for proving that a concept class

is learnable since, in the future, it will suffice to find an algorithm correct on only, say, 51%

of the instances (for all distributions). Alternatively, in its negative contrapositive form, the

result says that, if a concept class cannot be learned with accuracy 99.9%, then we cannot

2



hope to do even slightly better than guessing on the class (for some distribution).

The proof presented here is constructive; an explicit method is described for directly

converting a weak learning algorithm into one that achieves arbitrary accuracy. The con-

struction uses filtering to modify the distribution of examples in such a way as to force the

weak learning algorithm to focus on the harder-to-learn parts of the distribution. Thus, the

distribution-free nature of the learning model is fully exploited.

An immediate corollary of the main result is the equivalence of strong and group learnabil-

ity. A group-learning algorithm need only output an hypothesis capable of classifying large

groups of instances, all of which are either positive or negative. The notion of group learnabil-

ity was considered by Kearns et al. [16], and was shown to be equivalent to weak learnability

by Kearns and Valiant [14, 17]. The result also extends those of Haussler et al. [10] that

prove the equivalence of numerous variations and relaxations on the basic PAC-learning

model; both weak and group learnability are added to this general class of equivalent learn-

ing models. The relevance of the main result to a number of other learning models is also

considered in this paper.

An interesting and unexpected consequence of the construction is a proof that any strong

learning algorithm outputting hypotheses whose length (and thus whose time to evaluate)

depends on the allowed error c can be modified to output hypotheses of length only poly-

nomial in log(1/c). Thus, any learning algorithm can be converted into one whose output

hypotheses do not become significantly more complex as the error tolerance is lowered.

This bound on the size of the output hypothesis implies the hardness of learning any

concept class not evaluatable by a family of small circuits. For example, this shows that
pattern languages - a class of languages considered previously by Angluin [1) and others

- are unlearnable assuming only that NP/poly :# P/poly. This is the first representation-

independent hardness result not based on cryptographic assumptions. The bound also shows

that, for any function not computable by polynomial-size circuits, there exists a distribution

on the function's domain over which the function cannot be even roughly approximated by

a family of small circuits.

In addition to the bound on hypothesis size, the construction implies a set of general 0

bounds on the dependence on c of the time, sample and space complexity needed to efficiently 0

learn any learnable concept class. Most surprising is a proof that there exists for every

learnable concept class an efficient algorithm requiring space only poly-logarithmic in I/(.
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Because the size of the sample needed to learn with this accuracy is in general Q(1/C), this

means, for example, that far less space is required to learn than would be necessary to store

the entire sample. Since most of the known learning algorithms work in exactly this manner

- i.e., by storing a large sample and finding an hypothesis consistent with it - this implies

a dramatic savings of memory for a whole class of algorithms (though possibly at the cost

of requiring a larger sample).

Such general complexity bounds have implications for the on-line learning model as well.

In this model, the learner is presented one instance at a time in a series of trials. As each is

received, the learner tries to predict the true classification of the new instance, attempting

to minimize the number of mistakes, or prediction errors.

Translating the bounds described above into the on-line model, it is shown that, for

every learnable concept class, there exists an on-line algorithm whose space requirements

are quite modest in comparison to the number of examples seen so far. In particular, the

space needed on the first m trials is only poly-logarithmic in m. Such space efficient on-

line algorithms are of particular interest because they capture the notion of an incremental

algorithm forced by its limited memory to explicitly generalize or abstract from the data

observed. Also, these results on the space-efficiency of batch and on-line algorithms extend

the work of others interested in this problem, including Boucheron and Sallantin [6], Floyd [8],

and Ilaussler [9]. In particular, these results solve an open problem proposed by Haussler,

Littlestone and Warmuth [1].

An interesting bound is also derived on the expected number of mistakes made on the

first in trials. It is shown that, if a concept class is learnable, then there exists an on-line

algorithm for the class for which this expectation is bounded by a polynomial in log n. Thus,

for large m, we expect an cxt remely small fract ion of the first m predictions to be incorrect.

This resu!t answers another open question given by Haussler, Littlestone and Warmuth [11],

and significantly improves a similar bound given in their paper (as well as their paper with

Kearns [1O]) of m " for- soimie constant a < 1.

2 Preliminaries

We begin with a description of the distribution-free learning model. A concept c is a Boolean

function on some domain of instances. A concept class C is a collection of concepts. Often,
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C is decomposed into subclasses C,, indexed by a parameter n. That is, C = U,>, C, , and all

the concepts in C, have a common domain Xn. We assume each instance in X, has encoded

length bounded by a polynomial in n, and we let X = Un> Xn. Also, we associate with

each concept c its size s, typically a measure of the length of c under some encoding scheme

on the concepts in C.

The learner is assumed to have access to a source EX of examples. Each time EX is

called, one instance is randomly and independently chosen from Xn according to some fixed

but unknown and arbitrary distribution D. The oracle returns the chosen instance v, along

with a label indicating the value c(v) of the instance under the unknown target concept

c E C,. Such a labeled instance is called an example. We assume EX runs in unit time.

Given access to EX, the learning algorithm runs for a time and finally outputs an hy-

pothesis h, a prediction rule on X,. In this paper, we make no restrictions on h other than

that there exist a (possibly probabilistic) polynomial time algorithm that, given h and an

instance v, computes h(v), h's prediction on v.

We write PrED[lr(v)] to indicate the probability of predicate 7r holding on instances v

drawn from X, according to distribution D. To accommodate probabilistic hypotheses, we

will find it useful to regard 7r(v) as a Bernoulli random variable. For example, Pr[h(v) $ c(v)]

is the chance that hypothesis h (which may be randomized) will misclassify some particu-

lar instance v. In contrast, the quantity PrVED[h(v) # c(v)] is the probability that h will

misclassify an instance v chosen at random according to distribution D. Note that this last

'robability is taken over both the random choice of v, and any random bits 1used by h.

In general, assuming independence, we have

Pr [ir(v)] = D(v) Pr[7r(v)]
vED yEX.

where D(v) is the probability of instance v being chosen tinder D. (Technically, this formula

is valid only when X, is discrete. If X, is continuous, then the summation would need to be

replaced by the appropriate integral, and D by a probability density function. To simplify

the presentation, we will assume that X, is discrete, and omit the extension of these results

to continuous domains.)

The probability PrED[h(v) # c(v)] is called the crror of h on c tinder D; if the error is

no more than c, then we say h is c-clost to the target concept c under D. The quantity

PrvED[h(v) = c(v)] is the accuracy of h on c under I).
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We say that a concept class C is learnable, or strongly learnable, if there exists al algorithii

A such that for all n > 1, for all target concepts c E C,,, for all distributions D on Xn, and

for all 0 < c, 6 < 1, algorithm A, given parameters n, 6, 6, the size s of c, and access t oracle

EX, runs in time polynomial in n, s, 1/c and 1/6, and outputs an hypothesis h that with

probability at least 1 - 6 is f-close to c under D. There are many other equivai'ni notions

of learnability, including polynomial predictability [10].

Kearns and Valiant [17, 18] introduced a weaker form of learnability in which the error c

cannot necessarily be made arbitrarily small. A concept class C is weakly learnable Jf here

exists a polynomial p and an algorithm A such that for all -n > 1, for all targct 1onropts

c E C,, for all distributions D on X, and for all 0 < 6 < 1, algorithm A, given parameters

n, 6, the size s of c, and access to oracle EX, runs in time polynomial in n, .s and 1/6, and

outputs an hypothesis h that with probability at least 1 - 6 is (2 p(nl))close .c ':ne

D. In other words, a weak learning algorithm produces a prediction rule that per.orrns .lust

slightly better than random guessing.

3 The Equivalence of Strong and Weak Learnability

The main result of this paper is a proof that learnability and weak learnability are .enni,, lent

notions.

Tbeorem 3.1 A concept class C is weakly learnable if and only if it is learnable.

That strong learnability implies weak learnability is trivial. The remainder of this section

is devoted to a proof of the converse. We assume then that some concept class C is wraklx

learnable and show how to build a strong learning algorithm around a weak one.

We begin with a description of a technique by which the accuracy of any algorithm can

be boosted by a small but significant amount. Later, we will show how this mechaolisin can

be applied recursively to make the error arbitrarily small.

3.1 The Hypothesis Boosting Mechanism

Let A be an algorithm that produces with high probability an hypothesis a-close to t he ti rget

concept c. We sketch an algorithm A' that simulates A on three different distributions. and

outputs an hypothesis significantly closer to c.
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Let EX be the given examples oracle, and let D be the distribution on X,, induced by

EX. The algorithm A' begins by simulating A on the original distribution D1 = D, using

the given oracle EX1 = EX. Let h, be the hypothesis output by A.

Intuitively, A has found some weak advantage on the original distribution; this advantage

is expressed by hi. To force A to learn more about the "harder" parts of the distribution,

we must somehow destroy this advantage. To do so, A' creates a new distribution D2 under

which an instance chosen according to D 2 has a roughly equal chance of being correctly or

incorrectly classified by hl. The distribution D 2 is simulated by filtering the examples chosen

according to D by EX. To simulate D 2, a new examples oracle EX 2 is constructed. When

asked for an instance, EX 2 first flips a fair coin: if the result is "heads," then EX 2 requests

examples from EX until one is chosen for which hl(v) = c(v); otherwise, EX 2 waits for an

instance to be chosen for which hi(v) 96 c(v). (Later we show how to prevent EX2 from

having to wait too long in either of these loops for a desired instance.) The algorithm A is

again simulated, this time providing A with examples chosen by EX2 according to D2 . Let

h 2 be the output hypothesis.

Finally, D3 is constructed by filtering from D those instances on which h, and h2 agree.

That is, a third oracle EX3 simulates the choice of an instance according to D3 by requesting

instances from EX until one is found for which hi(v) # h2 (v). (Again, we will later show

how to limit the time spent waiting in this loop for a desired instance.) For a third time,

algorithm A is simulated with examples drawn this time by EX3 , producing hypothesis h3 .

At last, A' outputs its hypothesis h: given an instance v, if h1 (v) = h2 (v) then h predicts

the agreed upon value; otherwise, h predicts h3(v). (In other words, h takes "majority vote"

of hl, h2 and h3.) Later, we show that h's error is bounded by g(a) = 3a 2 - 2a'. This

quantity is significantly smaller than the original error 0, as can be seen from its graph

depicted in Figure 1. (The solid curve is the function g, and, for comparison, the dotted line

shows a graph of the identity function.)

3.2 A Strong Learning Algorithm

An idea that follows naturally is to treat the previously described procedure as a subroutine

for recursively boosting the accuracy of weaker hypotheses. The procedure is given a desired

error bound c and a confidence parameter 6, and constructs an C-close hypothesis from

weaker, recursively computed hypotheses. If c 1 then an assumed weak learning
__ 2 p(n,.,)

7



g(a')

0.5

0.4

0.3

0.2

0.1

0.0 a
0.0 0.1 0.2 0.3 0.4 0.5

Figure 1: A graph of the function g(a) = 3a 2 - 2a 3 .

algorithm can be used to find the desired hypothesis; otherwise, an -close hypothesis is

computed recursively by calling the subroutine with c set to g-'(f).

Unfortunately, this scheme by itself does not quite work due to a technical difficulty:

because of the way EX 2 and EX3 are constructed, examples may be required from a very

small portion of the original distribution. If this happens, the time spent waiting for an

example to be chosen from this region may be great. Nevertheless, we will see that this

difficulty can be overcome by explicitly checking that the errors of hypotheses h, and h 2 on

D are not too small.

Figure 2 shows a detailed sketch of the resulting strong learning algorithm Learn. The

procedure takes an error parameter f and a confidence parameter 6, and is also provided with

an examples oracle EX. The procedure is required to return an hypothesis whose error is at

8



Input: error parameter f
confidence parameter 6
examples oracle EX

(implicit) size parameters s and n
Return: hypothesis h that is E-close to the target concept c with probability > 1 - 6

Procedure:
if f> - -1 then return WeakLearn(b, EX)

EX 1 - EX
h - Learn(a, .,EXI)

I5

let h, be an estimate of a, = Pr,,D[hl(v) : c(v)]:
choose a sample sufficiently large that la, - ai I rl with probability 1 - -1

if 1 < f- r 1 then return hi
defun EX 2()

{ flip coin
if "heads," return the first instance v from EX for which hi(v) = c(v)
else return the first instance v from EX for which hi(v) # c(v) }

h2- Learn(a, 1b6,EX 2)
(1- (i- 2a)5

let be an estimate of e = PrED[h 2(v) # c(v)]:
choose a sample sufficiently large that le - ej ! 72 with probability 1 - 1

if < E - r2 then return h 2

defun EX 3()
{ return the first instance v from EX for which hl(v) h2 M(v) }

h3 - Learn(a, 1, EX3 )
defun h(v)

{ +- hl(v), b2  h2 (V)
if b, = b2 then return 01

else return h3(v) }
return h

Figure 2: A strong learning algorithm Learn.

most c with probability at least I - 6. In the figure, p is a polynomial and WeakLearn(b, EX)

is an assumed weak learning procedure that outputs an hypothesis (2-p( ,s))-close to the

target concept c with probability at least I - 6. As above, g(a) is the function 3a2" 2- 3 ,

and the variable a is set to the value g-(e). Also, the quantities &I and are estimates

of the errors of h, and h2 under the given distribution D. These estimates are made with

error tolerances 7- and r2 (defined in the figure), and are computed in the obvious manner

9



based on samples drawn from EX; the required size of these samples can be determlined, for

instance, using Chernoff bounds [22]. The parameters s and n are assumed to be k.i-own

globally.

Note that Learn is a procedure taking as one of its inputs a function (EX) and retnrning as

output another function (h, a hypothesis, which is treated like a procedure). FurlI, li orV,

to simulate new example oracles, Learn must have a means of dynamically definimg 11"w

procedures (as is allowed, for instance, by most Lisp-like languages). Therefoie, l,, iIe

figure, we have used the somewhat non-standard keyword defun to denote the defiiIti:m of

a new function; its syntax calls for a name for the procedure, followed by a pa eit ksi:,t,,,

list of arguments, and the body indented in braces. Static scoping is assumed.

Learn works by recursively boosting the accuracy of its hypotheses. Learn iv1 c;,11y

calls itself three times using the three simulated example oracles described in tlie pr,,C 11-i,

section. On each recursive call, the required error bound of the constructed hypoth.-s-,,,,,

closer to ; when this bound reaches - - ,) the weak learning algorithm WeakLearn can
2 2 P(n's)'

be used.

The procedure takes measures to limit the run time of the simulated oracles it pr ,icics

on recursive calls. When Learn calls itself a second time to find h2 , the expected number of

iterations of EX2 to find an example depends on the error of hi, which is estimated by a,.

If h, already has the desired accuracy 1 - f, then there is no need to find h 2 and h,1 since

hi is a sufficiently good hypothesis; otherwise, if a, = 0(f), then it can be shown that / A 2

will not loop too long to find an instance. Similarly, when Learn calls itself to find h3, the

expected number of iterations of EX3 depends on how often h, and h 2 disagree, which we

will see is in turn a function of the error of h 2 on the original distribution D. If this error e

(which is estimated by .) is small, then h2 is a good hypothesis and is returned bY Learn.

Otherwise, it will be shown that EX3 also will not run for too long.

3.3 Correctness

We show in this section that the algorithm is correct in the following sense:

Theorem 3.2 For 0 < < and for 0 < 6 < 1, the hypothesis rcturned by calling

Learn((, b EX) is (-close to the target concept with probability at least 1 - 6.

10



D1

k4-1/2I-" -q2
I 1s S

hi=c h2=C

Figure 3: The distributions D, and D2 .

Proof: Proof is by induction starting at the bottom of the recursion. (Technically, the

induction is on B(E,p(n,s)), where B is a function defined in the next section.) The base

case that E > 1 - ' follows trivially from our assumptions about WeakLearn. Anotbr2 p(n,)

easy case is that &I or is found to be smaller than f - rl or c - 2, respectively. In either

case, it follows immediately, due to the accuracy with which a, and e have been estimated,

that the returned hypothesis is c-close to the target concept.

Otherwise, all three hypotheses must be found and combined. Let ai be the error of hi

under Di. Here, D is the distribution of the provided oracle EX, and Di is the distribution

induced by oracle EXi on the ith recursive call (i = 1, 2,3). By inductive hypothesis, ai _a

with prcbability 1 - 6.

In the special case that all hypotheses are deterministic, the distributions D1 and D2

can be depicted schematically as shown in Figure 3. The figure shows the portion of each

distribution for which the hypotheses h, and h 2 agree with the target concept c. For each

distribution, the top crosshatched bar represents the relative fraction of the instance space

for which h, agrees with c; the bottom striped bar represents those instances for which h2

agrees with c. Although only valid for deterministic hypotheses, this figure may b(: helpful

for motivating one's intuition in what follows.

11



Let pi(v) = Pr[hi(v) # c(v)] be the chance that some fixed instance v is misclassi-

fied by hi. (Recall that hypotheses may be randomized, and therefore it is necessary to

consider the probability that a particular fixed instance is misclassified.) Similarly, let

q(v) = Pr[hl(v) h 2(v)] be the chance that v is classified differently by hA and h2. Also

define w, x, y, and z as follows:

w = Pr [h2(v) # h1 (v) = c(v)]
vED

x = Pr[hi(v) = h2(v) = c(v)]
VED

y = Pr[hi(v) # h2(v) = c(v)]rED

z = Pr [h1(v) = h 2(v) # c(v)]

vED

Clearly,

w + x = Pr [hi(v) = c(v)] = 1 - a,,
vED

and since c, hA and h2 are Boolean,

y+ z= Pr [h,(v)# c(v)] =a,. (2)
vED

In terms of these variables, we can express explicitly the chance that EXi returns instance

V:

Di(v) = D(v) (3)

D 2(V) = D(v) (pI_) 1-pi(v)) (4)
2 \ a, - a- -,

D 3 (v) = D(v)q(v) (5)
w+y

Equation (3) is trivial. To see that (4) holds, note that the chance that the initial coin flip

comes up "tails" is 1, and the chance that instance v is the first instance misclassified by h,
2'

is D(v)pl(v)/al. The case that the coin comes up "heads" is handled in a similar fashion,

as is the derivation of equation (5).

From equation (4), we have that

1 -a 2 = E D 2 (v)(1 - P2(V))
vEX,

1 1 D(v)(1 - p(v))(1 - p2())-2avX f  ~ ~lv(-2v) 2(1 - a,) 1 x -p ()(

2a EX 2(, 1 EXy + X

2a, 2(1 - a,)

12



Combining equations (1), (2) and (6), we see that the values of w, x and z can be written

explicitly in terms of y, a, and a2. (Note that (6) could also have been derived from Figure 3

in the case of deterministic hypotheses: if 0 is as shown in the figure, then it is not hard to

see that y = 2a,# and x = 2(1 - al)(1 - a2 - 3). These imply (6).)

Finally, using equation (5), we are ready to compute the error of the output hypothesis
h:

Pr [h(v) # c(v)] = Pr[(hi(v) = h2 (v) # c(v)) V (hi(v) # h2(v) A h3(v) #c(v))]

vED

= z + E D(v)q(v)p3 (v)
vEX.

= z + E (w + y)D 3 (v)p3 (v)
vEX.

= z + a3(w + y)

= a, - a 3 + a a3 + 2a 2a3 - 2ala 2a3 + -4-(a3 - a,)
a,

< 3a 2 - 2a 3 = g(a) = C

as desired. The inequality here follows with some care from the facts that each ai < a, and

that y < a,.

Finally, note that the confidence parameter 6 has been "spread around" so that the

overall chance of anything "going wrong" is at most 5. 0

3.4 Analysis

In this section, we argue that Learn runs in polynomial time. Here and throughout this

section, unless stated otherwise, polynomial refers to polynomial in n, s, 1/ and 1/6. Our

approach will be to first derive a bound on the expected running time of the procedure, and

to then use a part of the confidence b to bound with high probability the actual running time

of the algorithm. Thus, we will have shown that the procedure is probably fast and correct,

completing the proof of Theorem 3.1. (Although technically we only show that Learn halts

probabilistically, by the results of Haussler et al. [10, the procedure can easily be converted

into a learning algorithm that halts deterministically in polynomial time.)

We will be interested in bounding several quantities. First, we are of course interested

in bounding the expected running time T(f, 5) of Learn(e,5, EX). This running time in

turn depends on the time U(e, 5) to evaluate an hypothesis returned by Learn, and on the

expected number of examples M(c, b) needed by Learn. In addition, let t(b), u(b) and m(b)

13



be analogous quantities for WeakLearn(6, EX). By assumption, t, u and m are polynomially

bounded. Also, all of these functions depend implicitly on n and s.

As a technical point, we note that the expectations denoted by T and M are taken only

over "good" runs of Learn. That is, the expectations are computed given the assumption

that every sub-hypothesis and every estimator is successfully computed with the desired

accuracy. By Theorem 3.2, this will be the case with probability 1 - 6.

It is also important to point out that T (respectively, t) is the expected running time

of Learn (WeakLearn) when called with an oracle EX that provides examples in unit timr

Our analysis will take into account the fact that the simulated oracles supplied to Learn or

WeakLearn at lower levels of the recursion do not in general run in unit time.

We will see that T, U and M are all exponential in the depth of the recursion induced

by calling Learn. We therefore begin by bounding this depth. Let B(c,p) be the smallest

integer i for which gi (I - .0 < 6. On each recursive call, f is replaced by g-(c). Tisi, !he

depth of the recursion is bounded by B(e,p(n,s)). We have:

Lemma 3.1 The depth of the recursion induced by calling Learn(e, 6, EX) is at most

B(e,p(n,s)) = O(log(p(n,s)) + log log(1/e)).

Proof:

We can say B(,p(n,s)) <_ b+c if gb (I < I and gC (1) < e. Clearly, g(x) < 3x 2

and so g'(x) < (3x)2'. Thus, it suffices to choose c = [lglog4 (1/ . Similarly, if . < x <

then - g(X) = X) (1+ 2x - 2X2 ) 1 R (1_ x). Thus, the proof is completed by

choosing b= [log p(n,s)

For the remainder of this analysis, we let p = p(n,s) and, where clear from context, let

B = B(c,p).

We show next that U is polynomially bounded. This is important because we require

that the returned hypothesis be polynomially evaluatable.

Lemma 3.2 The time to evaluate an hypothesis returned by Learn(c,6,EX) is U(c,6) =
0( 3 B • u( 6 / 5B)).

Proof: If e > -.- 1, then Learn returns an hypothesis computed by WeakLearn. In this
2 p'

case, U(E, 6) = u(6). Otherwise, the hypothesis returned by Learn involves the computation

of at most three sub-hypotheses. Thus,

U(c,b) < 3• U (,-'(f), b) + 0(1).
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Solving this easy recurrence, we arrive at the stated time bounrl. IP

When an example is requested of a simulated oracle on one of Learn's recursive calls,

that oracle must itself draw several examples from its own oracle EX. For instance, on the

third recursive call, the simulated oracle must draw instances until it finds one on which h,

and h2 disagree. Naturally, the running time of Learn depends on how many examples must,

be drawn in this manner by the simulated oracle. The next lemma bounds this quantity.

Lemma 3.3 Let r be the expected number of examples drawn from EX by any oracle EXi

simulated by Learn when asked to provide a single example. Then r < 4/f.

Proof: When Learn calls itself the first time (to find hi), the examples oracle EX it was

passed is left unchanged. In this case, r = i.

The second time Learn calls itself, the constructed oracle EX2 loops each time it is called

until it receives a desirable example. Depending on the result of the initial coin flip, we

expect EX 2 to loop 1/a, or 1/(1 - al) times. Note that if a, < e - 2r, = ie then, based on

its estimate of a,, Learn would have simply returned h, instead of making a second or third

recursive call. Thus, we can assume 1c < a ,i , and so r < 3/c in this case.

Finally, when Learn calls itself the third time, we expect the constructed oracle EX3 to

loop 1/(w + y) times before finding a suitable example. (Here, the variables w, x, y and z

are as defined in the proof of Theorem 3.2.) It remains then only to show that w + y > 1C.

Note that the error e of h2 on the original distribution D is w + z. Thus, using this fact and

equations (1), (2) and (6). we can solve explicitly for w and y in terms of e, a, and a2, and

so find that
c - 4'1ila-(l - ai). > al+ e - 4aja(1 - a,)

w + y= a, + - 2( 1 - a) (7)1 -2(, 1 - 2al

To lower bound w + y, we will find the nininium of this second function on the interval

[0,a]. Differentiating (with respect to al) we see that the function has at, most one critical

point less than 1 and we note further that such a critical point cannot be minimal since the
2'

function tends to -_o as a, -4 -oc. This means that the function's minimum on any closed

subinterval of (-oc. 1) is achieved at one endpoint of the subinterval. In particular, for the

subinterval of interest to us, the function achieves its minimurn either when a, = 0 or when

a, = a.

We can assume that e _> - 2r 2 = (t- 2 oth.rwise, if e were smaller than this

quantity, then Learn would have returncd !t2 ratlier lwni .:oiMng on to compute h3. Tlis. if



a= 0 thenw+y 4 ' 4

Lemma 3.4 The expected number of examples M(e, 6) needed by Learn(c, 6, FAD is

0 (36B8 (B2±+p2 log(I 16)+-n(615B)))

Proof: In the base case that c - Learn simply calls WeakLearn, so we have M(c, 6)

m(b). On each of the recursive calls, the simulated oracle is required to provide M(g- (e), 16)

examples. To provide one such example, the simulated oracle must itself draw at most

an average of 4/c examples from EX. Thus, each recursive call demands at niost '4/c)

m(g-1 (e), 1b) examples on average.

In addition, Learn requires some examples for making its estimates a, and . Using

Chernoff bounds [22], we can show that a sample of size O(p2 log(1/6)/C2 ) suffices.

We thus arrive at the recurrent equation:

M (C,) < 12. M(g'1(e) ' 6) 0 2 log(1b))

Making use of the fact that g-1(0) > i and that B(g-'(),p) = B(c,p) - 1, we can solve

this recurrence and arrive at the stated bound. •

Lemma 3.5 The expected execution time of Learn(f, 6, EX) is given by T(c, 6) =

0 (3B . t(6/5B) + 108 .

" u(/5B). (Bp2 + p2 log(1/ 6 ) + m(6/5B)))
C2

Proof: As in the previous lemmas, the base case that e > is easily handled. In this

case, T(c,6) = t(6).

Otherwise, Learn takes time 3- T(g-1 (c),16) on its three recursive calls. In addition,

Learn spends time drawing examples to make the estimates h, and , and overhead time is

also spent by the simulated examples oracles passed on the three recursive calls. A typical

example that is drawn from Learn's oracle EX is evaluated on zero, one or two of the

previously computed sub-hypotheses. For instance, an example drawn for the purpose of

estimating h, is evaluated once by hi; an example drawn for the simulated oracle EX3 is

evaluated by both h, and h 2. Thus, Learn's overhead time is proportional to the product

of the total number of examples needed by Learn and the time it takes to evaluate a

hypothesis on one of these examples. Therefore, the following recurrence holds:

T(, 6) 3 (- (), 6) + 0 (U(g M(, 6))
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Applying Lemmas 3.2 and 3.4, this recurrence implies the stated bound. U

The main result of this section follows immediately:

Theorem 3.3 Let 0 < c < . and let 0 < 6 < 1. With probability at least 1 -6, the execution

of Learn(e, 1b, EX) halts in polynomial time and outputs an hypothesis e-close to the target

concept.

Proof: The chance that Learn does not output an hypothesis e-close to c is at most 6.

The chance that such an hypothesis is output after time (2/6) . T(E, 16) is also at most 16. 0

3.5 Space Complexity

Although not of immediate consequence to the proof of Theorem 3.3, it is worth pointing

out that Learn's space requirements are relatively modest, as proved in this section.

Let S(c, 6) be the space used by Learn(e, 6, EX); let Q(c, 6) be the space needed to store

an output hypothesis; and let R(e, 6) be the space needed to evaluate such an hypothesis.

Let s(6), q(6) and r(6) be analogous quantities for WeakLearn(6, EX). Then we have:

Lemma 3.6 The space Q(e, 6) required to store an hypothesis output by Learn(f, 6, EX)

is at most 0( 3 B • q(6/5B)). The space R(c, 6) needed to evaluate such an hypothesis is

O(B + r(6/5B)). Finally, the total space S(c,6) required by Learn is 0( 3 ' - q(6/5B) +

s(615 B) + B -r(615B)).

Proof: For e_ -> the bounds are trivial. Otherwise, the following recurrences are easy

to derive bounding Q and R:

Q(_,) 3. Q(g (c),6) + 0(1)

R(c,,6) <_ R(g'(c), .6) + 0(1)

For bounding S, note that the space required by Learn is dominated by the storage of

the sub-hypotheses, by their recursive computation, and by the space needed to evaluate

them. Thus,

S(e,6) <S(g'(c), 1) + 0 (Q(g-(c), -6) + R(g'(e), -6))

which implies the desired bound. U
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4 Improving Learn's Time and Sample Complexity

In this section, we describe a modification to the construction of Section 3 that significantly

improves Learn's time and sample complexity. In particular, we will improve these complex-

ity measures by roughly a factor of 1/c, giving bounds that are linear in 1/f (ignoring log

factors). These improved bounds will have some interesting consequences, described in later

sections.

In the original construction of Learn, much time and many examples are squandered by

the simulated oracles EX, waiting for a desirable instance to be drawn. Lemma 3.3 showed

that the expected time spent waiting is 0(1/f). The modification described below will reduce

this to 0(1/a) = O(1/V 7 ). (Here, a = g-'(E) as before.)

Recall that the running time of oracle EX2 depends on the error a, of the first, sub-

hypothesis hi. In the original construction, we ensured that a, not be too small by estimating

its value, and, if smaller than E, returning hI instead of continuing the normal execution of

the subroutine. Since this approach only guarantees that a, _> R(), there does not seen,

to be any way of ensuring that EX2 run for o(1/c) time. To improve EX 2 's running time

then, we will instead modify hi by deliberately increasing its error. Ironically, this intentional

injection of error will have the effect of improving Learn's worst case running time by limiting

the time spent by either EX2 or EX 3 waiting for a suitable instance.

4.1 The Modifications

Specifically, here is how Learn is modified. Call the new procedure Learn'. Following the

recursive computation of hl, Learn' estimates the error a, of hl, although less accurately

than Learn. Let hl be this estimate, and choose a sample large enough that la, - &1 _< .a

with probability at least 1 - -6. Since 0 < a, _< a, we can assume ithout loss of generality

that !a < hi <

Next, Learn' defines a new hypothesis h' as follows: given an instance v, h' first flips a

coin biased to turn up "heads" with probability exactly

3a

- ic - ill

If the outcome is "tails," then h' evaluates h1 (v) and returns the result. Otherwise, if

"heads," h' predicts the wrong answer, -,c(v). Since h' will only be used during the training
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phase, we can assume that the correct classification of v is available, and thus that h' can

be simulated.

This new hypothesis h' is now used in place of h, by EX2 and EX3 . The rest of the

subroutine is unmodified. In particular, the final returned hypothesis h is unchanged -

that is, hl, not h', is used by h.

4.2 Correctness

To see that Learn' is correct, note first that the error of h' is exactly a' = (1 - p)aj + p

since the chance of error is a, on "tails," and is 1 on "heads." By our choice of p, it can be

verified that !a < a' < a.

Let h' be the same hypothesis as h, except with h' used in lieu of hl. Note that h', hl, h2

and h3 are related to one another in exactly the same way that h, hl, h2 and h3 are related

in the original proof of Theorem 3.2. That is, if we imagine that h' is returned on the first

recursive call of the original procedure Learn, then it is not impossible that h2 and h3 would

be returned on the second and third recursive calls, in which case h' would be the returned

hypothesis. Therefore, by the same argument used to prove Theorem 3.2, the error of h' is

at most g(ca) = -

It is not surprising, and is not hard to verify, that increasing hl's chance of error on

instance v cannot possibly decrease the chance that h misclassifies v. Therefore, since

Pr[h'(v) 5 c(v)] _> Pr[hi(v) # c(v)] for any v, the error of h cannot be greater than the error

h', which is bounded by E.

4.3 Analysis

Next, we show that Learn' runs faster using fewer examples than Learn. We use essentially

the same analysis as in Section 3.4. The following three lemmas are modified versions of

Lemmas 3.3, 3.4 and 3.5. The proofs of the other lemmas apply immediately to Learn' with

little or no modification, and so are omitted.

Lemma 4.1 Let r be the expected number of examples drawn from EX by any oracle EX

simulated by Learn' when asked to provide a single example. Then r < 4/cr.

Proof: As in the original proof, r = 1 for EXI. We expect the second oracle to loop at most

1/a't times on average. Since a' -!a, r is at most 2/a in this case.
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Finally, to bound the number of iterations of EX3 , we will show that w + y > !a using

equation (7) as in the original proof. To lower bound w + y, we find the minimum of the last

formula of (7) (with a, replaced by a' of course) on the interval [!a, a). As noted previously,

the function must achieve its minimum at one endpoint of the interval. Assuming as in the

original proof that e > + 1 e ), we see that when a' = a, w+y la(4-7a±2a') 1a.
Similarly, when a' = la,a. This completes the proof. a

Lemma 4.2 The expected number of examples M(c,6) needed by Learn'((,6,EX) is
O ( 3 6 - (Bp2 + p2 log(1/6) + m(B/5))).

Proof: The proof is nearly the same as for Lemna 3.4. In addition to incorporating the

superior bound given by Lemma 4.1 on the number of examples needed by the sirnulated

oracles, we must also consider the number of examples needed to estimate a, and e. The first,

a,, can be estimated using a sample of size O(log(1/b)/ar2 ) = O(log(1/6)/c). By estimating e

in a slightly different manner, we can also achieve a better bound on the sample size needed.

Specifically, we can choose a sample large enough that, with probability 1 - 1b, < e

if e < - 2r 2 , and & > f - r2 if e > F. Such an estimate has all of the properties needed by

Learn', but only requires a sample of size O(p2 log(1/b)/e) as can be derived using Chernoff

bounds [22].

Thus, we arrive at the recurrence

-
1 2 .M (g-'(),16) (p 2 °log(l1b))

which implies the stated bound. U

Lemma 4.3 The expected execution time of Learn'(c,b,EX) is given by T(f,6) -

0(3 B t(6/5 B )+ 118 B -u(6/ 5 B) (B P2 + p2 log(1 /6) + mn(b/5 B))

Proof: This bound follows from the recurrence (8), using the superior bound on M given

by Lemma 4.2. U

5 Variations on the Learning Model

Next, we consider how the main result relates to some other learning models.
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5.1 Group Learning

An immediate consequence of Theorem 3.1 concerns group learnability. In the group learning

model, the learner produces a hypothesis that need only correctly classify large groups of

instances, all of which are either positive or negative examples. Kearns and Valiant [14, 17]

prove the equivalence of group learning and weak learning. Thus, by Theorem 3.1, group

learning is also equivalent to strong learning.

5.2 Miscellaneous PAC Models

Haussler et al. [10] describe numerous variations on the basic PAC model, and show that all of

them are equivalent. For instance, they consider randomized versus deterministic algorithms,

algorithms for which the size s of the target concept is known or unknown, and so on. It

is not hard to see that all of their equivalence proofs apply to weak learning algorithms as

well (with one exception described below), and so that any of these weak learning models

are equivalent by Theorem 3.1 to the basic PAC-learning model.

The one reduction from their paper that does not hold for weak learning algorithms

concerns the equivalence of the one- and two-oracle learning models. In the one-oracle

model (used exclusively in this paper), the learner has access to a single source of positive

and negative examples. In the two-oracle model, the learner has access to one oracle that

returns only positive examples, and another returning only negative examples. The authors

show that these models are equivalent for strong learning algorithms. However, their proof

apparently cannot be adapted to show that one-oracle weak learnability implies two-oracle

weak learnability (although their proof of the converse is easily and validly adapted). This

is because their proof assumes that the error f can be made arbitrarily small, clearly a bad

assumption for weak learning algorithms. Nevertheless, this is not a problem since we have

shown that one-oracle weak iearnability implies one-oracle strong learnability, which in turn

implies two-oracle strong (and therefore weak) learnability. Thus, despite the inapplicability

of Haussler et al.'s original proof, all four learning models are equivalent.

5.3 Fixed Hypotheses

Much of the PAC-learning research has been concerned with the form or representation of

the hypotheses output by the learning algorithm. Clearly, the construction described in
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Section 3 does not in general preserve the form of the hypotheses used by the weak learning

algorithm. It is natural to ask whether there exists any construction preserving this form.

That is, if concept class C is weakly learnable by an algorithm using hypotheses from a class

W of representations, does there then exist a strong learning algorithm for C that. also only

outputs hypotheses from H-?

In general, the answer to this question is "no" (modulo some relatively weak complexity

assumptions). As a simple example, consider the problem of learning k-term DNF formulas

using only hypotheses represented by k-term DNF. (A formula in disjunctive noi mal form

(DNF) is one written as a disjunction of terms, each of which is a conjunction of lle:als,

a literal being either a variable or its complement.) Pitt and Valiant [19] show that this

learning problem is infeasible if RP J NP.

Nevertheless, the weak learning problem is solved by the algorithm sketched below. (A

similar algorithm is given by Kearns [15].) First, choose a "large" sample. If signufiiiatly

more than half of the examples in the sample are negative (positive), then output the ";Ilways

predict negative (positive)" hypothesis, and halt. Otherwise, we can assume that the dis-

tribution is roughly evenly split between positive and negative examples. Select and output

the disjunction of k or fewer literals that misclassifies none of the positive examples, and the

fewest of the negative examples. Working through the details, it is not hard to show that

this output formula is correct for nearly all of the positive examples and for at least 2(1 /n k)

of the negative examples. Since the distribution is roughly evenly divided between positive

and negative examples, this implies that the output hypothesis is roughly (2 - Q(r))-close

to the target formula.

5.4 Queries

A number of researchers have considered learning scenarios in which the learner is not, only

able to passively observe randomly selected examples, but is also able to ask a "teacher"

various sorts of questions or queries about the target concept. For instance, the learner might

be allowed to ask if some particular instance is a positive or negative example. Angluin [2]

describes several kinds of query that might be useful to the learner. The purpose of this

section is simply to point out that the construction of Section 3 is applicable even in the

presence of most kinds of query. That is, a weak learning algorithm that depends on the

availability of certain kinds of query can be converted, using the same construction, into a
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strong learning algorithm using the same query types.

5.5 Many-Valued Concepts

In this paper, we have only considered Boolean valued concepts, i.e., concepts that classify

every instance as either a positive or a negative example. Of course, in the "real world,"

most learning tasks require classification into one of several categories (for instance, character

recognition). How does the result generalize to handle many-valued concepts?

First of all, for learning a k-valued concept, it is not immediately clear how to define

the notion of weak learnability. An hypothesis that guesses randomly on every instance

will be correct only 1/k of the time, so one natural definition would require only that the

weak learning algorithm classify instances correctly slightly more than 1/k of the time.

Unfortunately, under this definition, strong and weak learnability are inequivalent for k as

small as three. As an informal example, consider learning a concept taking the values 0, 1 and

2, and suppose that it is "easy" to predict when the concept has the value 2, but "hard" to

predict whether the concept's value is 0 or 1. Then to weakly learn such a concept, it suffices

to find an hypothesis that is correct whenever the concept is 2, and that guesses randomly

otherwise. For any distribution, this hypothesis will be correct half of the time, achieving

the weak learning criterion of accuracy significantly better than . However, boosting the

accuracy further is clearly infeasible.

Thus, a better definition of weak learnability is one requiring that the hypothesis be

correct on slightly more than half of the distribution, regardless of k. Using this definition,

the construction of Section 3 is easily modified to handle many-valued concepts.

6 General Complexity Bounds for PAC Learning

The construction derived in Sections 3 and 4 yields some unexpected relationships between

the allowed error f and various complexity measures that might be applied to a strong

learning algorithm. One of the more surprising of these is a proof that, for every learnable

concept class, there exists an efficient algorithm whose output hypotheses can be evaluated

in time polynomial in log(1/c). Furthermore, such an algorithm's space requirements are

also only poly-logarithmic in 1/c - far less, for instance, than would be needed to store the

entire sample. In addition, its time and sample size requirements grow only linearly in I/(
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(disregarding log factors).

Theorem 6.1 If C is a learnable concept class, then there ezists an efficient learning algo-

rithm for C that:

* requires a sample of size p(n, s,log(1/),log(1/b))

e runs in time p2 (n,s, log(1/c),log(1/b))

* uses space p3 (n,s, log(1/c),log(1/6)), and

e outputs hypotheses of size p4(n,s, log(1/E),log(1/b))

for some polynomials pi, P2, p3 and P4.

Proof: Given a strong learning algorithm A for C, convert A into a weak learning algorithm

A' that outputs hypotheses -close to the target concept. Now let A" be the procedure

obtained by applying the construction of Learn' with A' plugged in for WeakLearn. Fur-

thermore, assume without loss of generality, using the results of Haussler et al. [101, that A"

halts deterministically in time polynomial in log(1/6). Then the lemmas of Sections 3 and 4

imply that A" has all of the stated properties. M

The remainder of this section is a discussion of some of the consequences of Theorem 6.1.

6.1 Improving the Performance of Existing Algorithms

These bounds can be applied immediately to a number of existing learning algorithms,

yielding improvements in time and/or space complexity (at least in terms of f). For instance,

the computation time of Blumer et al.'s [4] algorithm for learning half-spaces of R" , which

involves the solution of a linear programming problem of size proportional to the sample, can

be improved by a polynomial factor of 1/c. The same is also true of Baum's [3] algorithm for

learning unions of half-spaces, which involves finding the convex hull of a significant fraction

of the sample.

There are many more algorithms for which the theorem implies improved space efficiency.

This is especially true of the many known PAC algorithms that work by choosing a large sam-

pie and then finding an hypothesis consistent with it. For instance, this is how Rivest's [20]

decision list algorithm works, as do most of the algorithms described by Blumer et al. [4], as
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well as Helmbold, Sloan and Warmuth's [13] construction for learning nested differences of

learnable concepts. Since the entire sample must be stored, these algorithms are not terribly

space efficient, and so can be dramatically improved by applying Theorem 6.1. Of course,

these improvements typically come at the cost of requiring a somewhat larger sample (by a

polynomial factor of log(1/c)). Thus, there appears to be a trade-off between sample size

and space (or time) complexity.

6.2 Data Compression

Blumer et al. [5, 4] have considered the relationship between learning and data compression.

They have shown that, if any sample can be "compressed" - i.e., represented by a prediction
rule significantly smaller than the original sample - then this compression algorithm can

be converted into a PAC-learning algorithm.

In some sense, the bound given in Theorem 6.1 on the size of the output hypothesis

implies the converse. In particular, suppose C,, is a learnable concept class and that we have

been given rn examples (vI,c(vl)),(v 2 ,c(v 2)),.. .,(V,,c(v,,,)) where each vi E X,, and c is a

concept in C,, of size s. The data compression problem is to find a small representation for

the data, i.e., an hypothesis h that is significantly smaller than the original data set with

the property that h(vi) = c(vi) for each vi. An hypothesis with this last property is said to

be consistent with the sample.

Theorem 6.1 implies the existence of an efficient algorithm that outputs consistent hy-

potheses only poly-logarithmic in the size rn of the sample. This is proved by the following

theorem:

Theorem 6.2 Let C be a learnable concept class. Then there exists an efficient algorithm

that, given 0 < 6 < 1 and r examples of a concept c E Cn of size s, outputs with probability

at least 1 - 6 a deterministic hypothesis consistent with the sample of size polynomial in n,

s and log m.

Proof: Haussler et al. [101 show how to convert any learkii,g algorithm into one that finds

hypotheses consistent with a set of data points. The idea is to choose 6 < 1/rn and to run

the learning algorithm on a (simulated) uniform distribution over the data set. Since ( is

less than the weight placed on any element of the sample, the output hypothesis must have

error zero. Applying this technique to a learning algorithm A satisfying the conditions of
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Theorem 6.1, we see that the output hypothesis has size only polynomial in n, s and log m,

and so is far smaller than the original sample for large m.

Technically, this technique requires that the learning algorithm output deterministic hy-

potheses. However, probabilistic hypotheses can also be handled by choosing a somewhat

smaller value for c, and by "hard-wiring" the computed probabilistic hypothesis with a se-

quence of random bits. More precisely, set c = 1/2m 2, and run A over the same distribution

as before. Then with high probability, the computed hypothesis h has chance of error at

most 1/2m on any one of the m examples in the sample. Now note that h can be regarded

as a deterministic function of an instance v and a sequence of random bits r. If r is such

a sequence, then the chance that h(., r) correctly classifies all of the m examples is at least

1 Thus, choosing and testing random sequences r, we can quickly find one for which the

deterministic hypothesis h(., r) is consistent with the sample. Finally, note that the size of

this output hard-wired hypothesis is bounded by IhI + Irl, and that Irl is bounded by the

time it takes to evaluate h, which is poly-logarithmic in rn. P1

Naturally, the notion of size in the preceding theoreri depends on the underlying model of

computation, which has deliberately been left unspec'ied. However, the theorem has some

immediate corollaries when the learning problem is discrete, i.e. when every instance in the

domain X, is encoded using a finite alphabet by a string of length presumably bounded by

a polynomial in n.

Corollary 6.1 Let C be a learnable discrete concept class. Then there exists an efficient

algorithm that, given 0 < 6 < 1 and a sample as in Theorem 6.2, outputs a deterministic

consistent hypothesis of size polynomial in n and s, and independent of m.

Proof: The size m of the sample is clearly bounded by IXnl. Since log IX l is bounded by

a poly %onial in it, thc corollary follows immediately. U

Applying "Occam's Razor" of Blumer et al. [5], this implies the following strong general

bound on the sample size needed to efficiently learn C. Although the bound is better than

that given by Theorem 6.1 (at least in terms of e), it should be pointed out that this

improvement requires the sacrifice of space efficiency since the entire sample must be stored.

Theorem 6.3 Let C be a learnable discrete concept class. Then there exists an efficient

learning algorithm for C requiring a sample of size 0 (p(ns) +Iog(I/1b) for some polyno-

mial p.
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6.3 Hard Functions are Hard to Learn

Theorem 6.1's bound on the size of the output hypothesis also implies that any hard-to-

evaluate concept class is unlearnable. Although this result does not sound surprising, it

was previously unclear how it might be proved: since a learning algorithm's hypotheses are

technically permitted to grow polynomially in 1/e, the learnability of such classes did not

seem out of the question.

This result yields the first representation-independent hardness results not based on cryp-

tographic assumptions. For instance, assuming P/poly # NP/poly, the class of polynomial-

size, nondeterninistic Boolean circuits is not learnable. (The set P/poly (NP/poly) consists

of those languages accepted by a family of polynomial-size deterministic (nondeterministic)

circuits.) Furthermore, since learning pattern languages was recently shown [211 to be as

hard as learning NP/poly, this result shows that pattern languages are also unlearnable

under this relatively weak structural assumption.

Theorem 6.4 Suppose C is learnable, and assume that Xn = {0, 1Inf. Then there exists a

polynomial p such that for all concepts c E Cn of size s, there exists a circuit of size p(n, s)

exactly computing c.

Proof: Consider the set of 2n pairs {(v,c(v)) I v E Xn}. By Corollary 6.1, there exists

an algorithm that, with positive probability, will output an hypothesis consistent with this

set of elements of size only polynomial in n and s. Since this hypothesis is polynomially

evaluatable, it can be converted using standard techniques into a circuit of the required size.

6.4 Hard Functions are Hard to Approximate

By a similar argument, the bound on hypothesis size implies that any function not com-

putable by small circuits cannot even be weakly approximated by a family of small circuits,

for some distribution on the inputs.

Let f be a Boolean function on {0, 1}*, D a distribution on {0, 1 } and C a circuit on n

variables. Then C f-approximates f under D if the probability is at mostf that C(v) # f(v)

on an assignment v chosen randomly from {O, 1}' according to D.
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Theorem 6.5 Suppose some function f cannot be computed by any family of polynomial-

size circuits. Then there exists a family of distributions D1 , D 2 ,..., where Dn is over the set

{0, 1} n , such that for all polynomials p and q, there exist infinitely many n for which there

exists no n-variable circuit of size at most q(n) that (2- --n)-approximates f under Dn.

Proof: Throughout this proof, we will assume without loss of generality that p(n) = q(n) =

nk for some integer k > 1.

Suppose first that for some k there exists for every distribution D on {O, 1)" a circuit of

size at most nk that (2- r)-app-,ximates f under D. Then f can, in a sense, be weakly

learned. More precisely, there exists an (exponential time) procedure that, by searching

exhaustively the set of all circuits of size n , will find one that (2- r)-approximates f

under some given distribution D. Therefore, by Theorem 3.1, f is strongly learnable in a

similar sense in exponential time. Applying Theorem 6.4 (whose validity depends only on

the size of the output hypothesis, and not on the running time), this implies that f can

be exactly computed by a family of polynomial-size circuits, contradicting the theorem's

hypothesis.

Thus, for all k > 1, there exists an integer n and a distribution D on {0, 1}' such that

no circuit of size at most nk is able to (2- )-approximate f under D. To complete the

proof, it suffices to show that this implies the theorem's conclusion.

Let V, be the set of distributions D on {0, 1}' for which no circuit of size at most nk

- _r)-approximates f under D. It is easy to verify that pn k D+' for all k, n. Also,

since every function can be computed by exponential size circuits, there must exist a constant

c > 0 for which D = 0 for all n. Let n[k] be the smallest n for which D' # 0. By the

preceding argument, n[k] must exist. Furthermore, n[k] > k/c, which implies that the set

N = {n[k] I k > 1 } cannot have finite cardinality.

To eliminate repeated elements from N, let k, < k2 < ... be such that n[k] # n[kj] for

i # j, and such that {n[ki] I i > 1} = N. Let Di be defined as follows: if i = n[kI for

some j, then let Di be any distribution in V, ' (which cannot be empty by our definition of

n[k]); otherwise, if i V N, then define Di arbitrarily. Then D1,D2,... is the desired family

of "hard" distributions. For if k is any integer, then for all ki >_ k, D,[k) E TDk ,] C VD[k].

This proves the theorem. U

Informally, Theorem 6.5 states that any language not in the complexity class P/poly

cannot be even weakly approximated by any other language in P/poly under some "hard"
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family of distributions. In fact, the theorem can easily be modified to apply to other circuit

classes as well, including monotone P/poly, and monotone or non-monotone NCk for fixed

k. (The class NCk consists of all languages accepted by polynomial-size circuits of depth

at most O(logk n), and a monotone circuit is one in which no negated variables appear.)

In general, the theorem applies to all circuit classes closed under the transformation on

hypotheses resulting from the construction of Sections 3 and 4.

6.5 On-Line Learning

Finally, we consider implications of Theorem 6.1 for on-line learning algorithms. In the on-

line learning model, the learner is presented one (randomly selected) instance at a time in

a series of trials. Before being told its correct classification, the learner must try to predict

whether the instance is a positive or negative example. An incorrect prediction is called a

mistake. In this model, the learner's goal is to minimize the number of mistakes.

Previously, Haussler, Littlestone and Warmuth [11] have shown that a concept class C is

learnable if and only if there exists an on-line learning algorithm for C with the properties

that:

* the probability of a mistake on the mth trial is at worst linear in m - 6 for some constant
0 < 0 < 1, and (equivalently)

* the expected number of mistakes on the first m trials is at worst linear in m' for some
constant 0 < a < 1.

(This result is also described in their paper with Kearns [101.) Noting several examples

of learning algorithms for which this second bound only grows poly-logarithmically in m,

the authors ask if every learnable concept class has an algorithm attaining such a bound.
Theorem 6.6 below answers this open question affirmatively, showing that in general the

expected number of mistakes on the first m trials need only grow as a polynomial in log m.

Thus, we expect only a minute fraction of the first m predictions to be incorrect.

(This result should not be confused with those presented in another paper by Haussler,

Littlestone and Warmuth [12]. In this paper, the authors describe a general algorithm

applicable to a wide collection of concept classes, and they show that the expected number

of mistakes made by this algorithm on the first m trials is linear in log m. However, their

algorithm requires exponential computation time, even if it is known that the concept class

is learnable. In contrast, Theorem 6.6 states that, if a concept class is learnable, then there
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exists an efficient algorithm making poly-logarithmic in m mistakes on average on the first

m trials.)

Haussler, Littlestone and Warmuth [11] also consider the space efficiency of on-line learn-

ing algorithms. They define a space-efficient learning algorithm to be one whose space re-

quirements on the first m trials do not exceed a polynomial in n, s and log m. Thus, a space

efficient algorithm is one using far less memory than would be required to store explicitly all

of the preceding observations. The authors describe a number of space-efficient algorithms

(though are unable to find one for learning unions of axis-parallel rectangles in the plane),

and so are lead to ask whether there exist space-efficient algorithms for all learnable concept

classes. Surprisingly, this open question can also be answered affirmatively, as proved by the

theorem below.

Lastly, Theorem 6.6 gives a bound on the computational complexity of on-line learning (in

terms of E). In particular, the total computation time required to process the first m examples

is only proportional to m logc m, for some constant c. Thus, in a sense, the "amortized" or
"average" computation time on the mth trial is only poly-logarithmic in m. (In fact, a more

careful analysis would show that this is also true of the worst case computation time on the

mth trial.)

Theorem 6.6 Let C be a learnable concept class. Then there exists an efficient on-line

learning algorithm for C with the properties that:

" the probability of a mistake on the mth trial is at most pl(n,s,logm)m

" the expected number of mistakes on the first m trials is at most p2(n, s, log m),

" the total computation time required on the first m trials is at most m • p3(n, s, log in),

and

" the space used on the first m trials is at most p4(n, s, log m),

for some polynomials Pl, P2, P3, p4.

Proof: Since C is learnable, there exists an efficient (batch) algorithm satisfying the prop-

erties of Theorem 6.1. Let A be such an algorithm, but with e/2 substituted for both f

and 6. Then the chance that A's output hypothesis incorrectly classifies a randomly chosen

instance is at most f. (This technique is also used by Haussler et al. [10].)
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Fix n and s, and let m(c) be the number of examples needed by A. From Theorem 6.1,

mr(c) _ (p/c). lgc(1/c) for some constant c and some value p implicitly bounded by a polyno-

mial in n and s. Let c(m) = (p/m) lgc(m/p). Then it can be verified that m(f(m)) < m for

m > 2p. Thus, for sufficiently large m, f(m) gives a bound on the best error rate achievable

from a sample of size m.

To convert A into an on-line learning algorithm in a manner that preserves time and

space efficiency, imagine breaking the sequence of trials into blocks of increasing size: the

first block consists of the first 2p trials, and each new block has twice the size of the last.

Thus, in general, the ith block has size si = 2'p, and consists of trials ai = 2(2i-1 - 1)p + 1

through bi = 2(2' - 1)p.

On the trials of the ith block, algorithm A is simulated to compute the ith hypothesis

hi. Specifically, A is simulated with f set to f(s,), which thus bounds the probability that

hi misclassifies a new instance. (Note that there are enough instances available in this block

for A to compute an hypothesis of the desired accuracy.) On the next block, as the (i + 1)st

hypothesis is being computed, hi is used to make predictions; at the end of this block, hi is

discarded as hj+j takes its place.

Thus, if the rnth trial occurs in the ith block (i.e., if ai < m < bi), then the probability

of a mistake is bounded by f(si-I), the error rate of hi- 1. From the definition of c(), this

implies the desired bound on the probability of a mistake on the mth trial, and, in turn, on

the expected number of mistakes on the first m trials.

Finally, note that on the ith block, space is needed only to store the hypothesis from the

last block hi-1 , and to simulate A's computation of block i's hypothesis. By Theorem 6.1,

both of these quantities grow polynomially in log(l/f). By our choice of E, this implies the

desired bound on the algorithm's space efficiency. The time complexity of the procedure is

bounded in a similar fashion. U

7 Conclusions and Open Problems

We have shown that a model of learnability in which the learner is only required to perform

slightly better than guessing is as strong as a model in which the learner's error can be made

arbitrarily small. The proof of this result was based on the filtering of the distribution in a

manner causing the weak learning algorithm to eventually learn nearly the entire distribution.
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We have also shown this proof implies a set of general bounds on the complexity of PAC-

learning (both batch and on-line), and have discussed some of the applications of these

bounds.

It is hoped that these results will open the way on a new method of algorithm design for

PAC-learning. As previously mentioned, the vast majority of currently known algorithms

work by finding a hypothesis consistent with a large sample. An alternative approach sug-

gested by the main result is to seek instead a hypothesis covering slightly more than half the

distribution. Perhaps, such an hypothesis is easier to find, at least from the point of view

of the algorithm designer. This approach leads to algorithms with a flavor similar to the

one described for k-term DNF in Section 5.3, and it is possible to find similar algorithms

for a number of other concept classes that are already known to be learnable (for example,

k-decision lists [20] and rank r decision trees [7]). To what extent will this approach be

fruitful for other classes not presently known to be learnable? This is an open question.

Another open problem concerns the robustness of the construction described in this

paper. Intuitively, it seems that there should be a close relationship between reducing the

error of the hypothesis, and overcoming noise in the data. Is this a valid intuition? Can our

construction be modified to handle noise?

Finally, turning away from the theoretical side of machine learning, we can ask how well

would our construction perform in practice? Often, a learning program (for instance, a neural

network) is designed, implemented, and found empirically to achieve a "good" error rate, but

no way is seen of improving the program further to enable it to achieve a "great" error rate.

Suppose our construction is implemented on top of this learning program. Would it help?

This is not a theoretical question, but one that can only be answered experimentally, and one

i hat obviously depends on the domain and the underlying learning program. Nevertheless,

it s(erns plausible that the construction might in some cases give good results in practice.
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